If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+41X+390=0
a = 1; b = 41; c = +390;
Δ = b2-4ac
Δ = 412-4·1·390
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-11}{2*1}=\frac{-52}{2} =-26 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+11}{2*1}=\frac{-30}{2} =-15 $
| 2x+61+180-2(x+30.5)=180 | | 150m-75m=43875=46125-150 | | 5÷n+7,25=(21-n)÷2 | | 22=16x | | (250-126)h=20+8 | | 10x+1=6x+19 | | 3x+8-×=42 | | 15x-2x^2=25 | | 3x-7+x=4+5x+4 | | x^2=19.36 | | 15-2x^2=25 | | 3x-7-x=4-5x+4 | | 5-3x=4-x | | x^2=55/36 | | z^2+3z=28 | | -9+x/3=-12 | | 2+4g=12 | | 4u^2=15u-14 | | 3y-63=2y-24 | | 8s+22=s+29 | | 4560=8w | | 2u+75=5u | | 130=10(-7+n) | | w+40=3w+26 | | -x^2+30x-125=0 | | 4s-3=6s-9 | | -16t^2+150t+750=0 | | 0.8-2t=1=3t | | 4w+58=2w+88 | | 0=-16t^2+150t+750 | | v+14=5v-46 | | v/5=331.25 |